A tight upper bound for 2-rainbow domination in generalized Petersen graphs
نویسندگان
چکیده
Let f be a function that assigns to each vertex a subset of colors chosen from a set C = {1, 2, . . . , k} of k colors. If u∈N(v) f (u) = C for each vertex v ∈ V with f (v) = ∅, then f is called a k-rainbow dominating function (kRDF) of G where N(v) = {u ∈ V | uv ∈ E}. The weight of f , denoted by w(f ), is defined as w(f ) = v∈V |f (v)|. Given a graph G, the minimum weight among all weights of kRDFs, denoted by γrk(G), is called the k-rainbow domination number of G. Bres̆ar and S̆umenjak (2007) [5] gave an upper bound and a lower bound for γr2(GP(n, k)). They showed that ⌈ 4n 5 ⌉ 6 γr2(GP(n, k)) 6 n. In this paper, we propose a tight upper bound for γr2(GP(n, k)) when n > 4k + 1. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
The lower bound for the number of 1-factors in generalized Petersen graphs
In this paper, we investigate the number of 1-factors of a generalized Petersen graph $P(N,k)$ and get a lower bound for the number of 1-factors of $P(N,k)$ as $k$ is odd, which shows that the number of 1-factors of $P(N,k)$ is exponential in this case and confirms a conjecture due to Lovász and Plummer (Ann. New York Acad. Sci. 576(2006), no. 1, 389-398).
متن کاملOn the 2-rainbow domination in graphs
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...
متن کامل2-rainbow domination in generalized Petersen graphs P(n, 3)
Assume we have a set of k colors and we assign an arbitrary subset of these colors to each vertex of a graph G. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this assignment is called a k-rainbow dominating function of G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G...
متن کاملThe exact domination number of the generalized Petersen graphs
Let G = (V, E) be a graph. A subset S ⊆ V is a dominating set of G, if every vertex u ∈ V − S is dominated by some vertex v ∈ S. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 161 شماره
صفحات -
تاریخ انتشار 2013